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Terminal Guidance Algorithm for Ramjet-Powered Missiles

Romesh K. Aggarwal¤ and Charles R. Moore†

Raytheon Systems Company, Tewksbury, Massachusetts 01876

The terminal guidancedesign problem for a long-rangebank-to-turn (BTT) ramjet missile involvesa completely
coupled pitch–yaw–roll nonlinear dynamics model. Because of these nonlinear dynamics, an optimal solution for
acceleration and roll-rate commands can be found only by numerical methods for solving two-point boundary
value problems. Because the roll-rate dynamics of the state-of-the-art missiles is much faster than the rest of the
system states, a near-optimalsolution is obtained to the BTT guidanceproblem using multiple timescale techniques.
Nonlinear feedback solutions for the acceleration command and roll-rate command are derived. The zero-order
slow solution obtained by treating roll rate as in� nitely fast, is exactly the optimal guidance law for a skid-to-turn
missile.The zero-order fast solutionprovides the roll-rate command.A � rst-order analysiscorrects the acceleration
command for the � nite dynamics behavior in bank angle. Simulation results are presented for a representative
terminal engagement using this algorithm. Near-zero miss distances are obtained in a noise-free environment.

I. Introduction

R AMJETS or ramjet derivatives are the only viable choice for
long-rangeair-to-air missiles. Ramjets can tolerate very small

sideslip angles and negative angles of attack due to propulsion sys-
tem � ameout problems.Thus, ramjet powered missilesutilizebank-
to-turn (BTT) guidance. The design of a terminal guidance system
for a ramjet BTT missile is a dif� cult task due to nonlinear pitch–

yaw–roll dynamics.BTT con� gurationswere studiedfor the rocket-
powered, short-range air-to-air missiles in Ref. 1, where classical
techniques were used to design the guidance system. Reference 2
used singular perturbation techniques to derive BTT guidance law
for a short-range air-to-air missile. However, in this formulation
the nonlinearity was introduced in the position dynamics due to the
heading of the missile velocity vector and the analysis ignored the
pitch and roll dynamics.

A long-range missile is essentially on the collision course at the
initiation of terminal guidance. Thus, the position dynamics are
considered linear, and the nonlinearity is introduced by the roll dy-
namics of the missile. This problem was treated in Ref. 3, where
the system dynamics were linearized about a nominal bank angle
and linear quadratic control techniques were utilized to obtain the
guidancelaw. However, the linear solutionassumes that missilewill
not roll through a large angle. This assumption does not hold for
many engagements.Reference4 used multiple timescale techniques
to develop a nonlinearBTT guidance law and veri� ed the near opti-
mally of the feedback guidance law by comparing it to the optimal
solution.However, this solutionwas derivedassumingperfect(zero-
lag) pitch and roll-rate autopilots. The roll-rate time constant of a
state-of-the-art missile is very small (0.02–0.04 s). Thus, the roll-
rate autopilotcan be assumedperfect.However, the time constantof
a pitch autopilot is approximately0.25 s. Thus, pitch-ratedynamics
are not negligible compared to roll dynamics. Also, the assumption
in Ref. 3 that the missile will not roll through a large angle may be
invalid for some engagements.

This paper extends the solution of Ref. 4 to develop a nonlinear
feedbackguidancelaw for a BTT missileassuminga � rst-orderpitch
autopilot and a zero-lag roll-rate autopilot. As in Ref. 4, the prob-
lem is formulated as a cheap control problem, that is, the weighting
factor on the roll control cost is chosen small. This weighting factor
becomes the perturbationparameter in the multiple timescale anal-
ysis, and the resultant problem separates into slow and fast modes.
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The solution is carried to the � rst order in the perturbationparame-
ter, which corrects it for the � nite roll dynamics.The resultant BTT
guidance algorithm was incorporated in a computer program, and
a representative set of terminal engagements were simulated. Miss
distances were negligible in the absence of noise.

II. Derivation of the BTT Missile Guidance Algorithm
In this section, the terminal guidance problem for a long-range

ramjet missile against an air target is formulated as an optimal con-
trol problem, and the solution using multiple timescale techniques
is outlined.

Problem Formulation
As in Ref. 4, the problem is formulated in a nonrotating coor-

dinate frame that is aligned with the seeker frame at the start of
terminal guidance. Figure 1 gives a simple planar representationof
the intercept geometry in the xr , zr plane, with the xr axis along the
initial line of sight and the zr axis normal to it. A similar picture
applies to the xr , yr plane. In this frame, the intercept dynamics for
a BTT missile are represented by the following model:

Pyr D Vy (1)

PVy D ¡A cos Á C ATy (2)

Pzr D Vz (3)

PVz D ¡A sin Á C ATz (4)

PA D .Ac ¡ A/=¿a (5)

PÁ D PÁc (6)

where yr and zr are the relativepositionerrors,Vy and Vz are the rela-
tive velocity errors, A cos Á, A sin Á, ATy , and ATz are the respective
components of missile and target accelerationsnormal to the line of
sight, and Á is the missile roll angle. Ac and PÁc are, respectively,the
missile acceleration command and roll-rate command. The missile
is assumed to have a zero-lag roll-rate autopilot and a � rst-order
acceleration autopilot with time constant ¿a . The closing velocity
Vc along the initial line of sight xr is assumed constant. Thus, the
intercept time is obtained from the relation

xr D Vc.t f ¡ t/ (7)

An optimalchoice for the controls AC and PÁC is sought,where the
criterion for the optimality is the minimization of the performance
index given by

J D 1

2
y2

r .t f / C z2
r .t f / C

t f

t0

ba A2
c C b PÁ PÁ2

c dt (8)
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Fig. 1 Moving nonrotating coordinate system for air-to-air missile.

Optimal Solution
The Lagrange multiplier method may be used to � nd the optimal

solution.5 The Hamiltonian for this problem is

H D ¸y Vy C ¸Vy ¡A cosÁ C ATy

C ¸z Vz C ¸Vz ¡A sin Á C ATz

C ¸Á
PÁc C 1

2
ba A2

c C b PÁ PÁ2
c C ¸A.Ac ¡ A/=¿a (9)

Because the Hamiltonian does not depend on yr or zr ,

P̧
y D 0 (10)

P̧
z D 0 (11)

The other four Lagrange variables are

P̧
Vy D ¡ @ H

@Vy
D ¡¸y (12)

P̧
Vz D ¡ @ H

@Vz
D ¡¸z (13)

P̧
A D ¡ @ H

@ A
D ¸Vy cos Á C ¸Vz sin Á C ¸A

¿a

(14)

P̧
Á D ¡

@ H

@Á
D A ¸Vz cos Á ¡ ¸Vv sin Á (15)

The � nal values of ¸Vy , ¸Vz , ¸A , and ¸Á are zero and

¸y .t f / D yr .t f / (16)

¸z.t f / D zr .t f / (17)

De� ne

yr .t f / D C cos NÁ (18)

zr .t f / D C sin NÁ (19)

where C is the unknown terminal miss distance given by

C D y2
r .t f / C z2

r .t f / (20)

and

NÁ D tan¡1 zr .t f /

yr .t f /
(21)

with these de� nitions,Eqs. (10–13), with terminalvalues of ¸Vy and
¸Vz set to zero, result in the following:

¸y .t/ D const D C cos NÁ (22)

¸z.t/ D const D C sin NÁ (23)

¸Vy .t/ D C cos NÁ.t f ¡ t/ (24)

¸Vz .t/ D C sin NÁ.t f ¡ t/ (25)

and Eqs. (14) and (15) become

P̧
A D C[cos. NÁ ¡ Á/].t f ¡ t/ C ¸A=¿a ; ¸A.t f / D 0 (26)

P̧
Á D AC[sin. NÁ ¡ Á/].t f ¡ t/; ¸Á.t f / D 0 (27)

The optimality conditions give optimal acceleration and roll-rate
commands

@ H

@ Ac
D 0 D ¸A

¿a
C ba Ac (28)

and

@ H

@ PÁc

D 0 D ¸Á C b PÁ
PÁc (29)

Note that the givenoptimal controlproblemis a two-pointboundary
value problem (TPBVP) involving Eqs. (1–8), (18), (19), and (26–

29). Several numerical methods are available for the solution of
the TPBVP. Although real-time solution of the TPBVP is possible,
the numerical techniques are computationally intensive and may
strain onboard throughput requirements. The following develops a
near-optimal feedback solution of this problem using the multiple
timescale analysis based on perturbation techniques.

The � nal closed-form solution is a simple function of existing
state variables, which can be readily implemented for real-time op-
eration. System performance could then be compared between a
more simple BTT law and the � rst-order solution provided here to
determine the degree of performance improvement. If further im-
provementwere required, the exact solutionof the TPBVP could be
implemented.

Perturbation Solution
Perturbationmethods can be described as model order reduction

techniques that capitalizeon the presenceof slow and fast modes in
the system.Thesemethodshavebeen applied to problems in optimal
control and estimation.6;7 In linear problems, ill conditioningin the
dynamics is avoided, and a high-orderproblem is reduced to the so-
lution of two (or more) low-order problems. In nonlinear problems,
perturbation techniques have led to nonlinear control solutions in a
feedback form.

In the perturbation techniques, the optimal control and trajectory
solution is expanded in an outer expansion solution about a system
parameter " D 0:

¢.t; "/ D ¢.t; 0/ C @¢
@"

" C ¢ ¢ ¢ ; t 2 .t0; t f / (30)

where ¢ denotes the states, adjoints, and control variables.However,
the expansion in Eq. (30) is not uniformly valid in the interval t0 ·
t · t f because the fast states and their adjoints will not satisfy
their respectiveboundaryconditionsat initial and/or terminal times.
This leads to the occurrence of boundary layer or inner expansion
solutions

¢.¿; "/ D ¢.¿; 0/ C @¢
@"

" C ¢ ¢ ¢ ; t D t0 (31)

¢.¾; "/ D ¢.¾; 0/ C @¢
@"

" C ¢ ¢ ¢ ; t D t f (32)

These solutions are derived using the time stretching transforma-
tions

¿ D .t ¡ t0/="; ¾ D .t f ¡ t/=" (33)

about t D t0 and t D t f , respectively.The total solution,which is the
sum of inner and outer expansions,satis� es all of the boundarycon-
ditions and is uniformly valid in the closed interval to t0 · t · t f .

The inner expansion solution at terminal time is only required in
cases where fast states have speci� ed terminal values. For the BTT
problem, bank angle is the fast state, and because the bank angle is
not speci� ed at terminal time t f , in this case no inner expansion is
required at terminal time.
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Zero-Order Outer Solution
From Eqs. (8) and (29), the optimality conditions, it can be seen

that when b PÁ ! 0 ( PÁc is a cheap control) the optimum PÁc at initial
time t0 is an impulse. Moreover, Eqs. (27) and (29) imply that this
roll-rate command impulse at time t0 will bring the roll angle Á to
NÁ (value of optimum Á will be determined later) and for time t > t0

¸Á .t/ D 0; .t0; t f ] (34)

P̧
Á .t/ D 0; .t0; t f ] (35)

Thus, the system dynamics are separated into slow and fast modes,
with relative position, velocity, and pitch acceleration being slower
and bank-angle dynamics being faster. Thus, the zero-order slow
solution is obtained as follows:

Á0 D NÁ (36)

where superscript0 refers to zero-order outer solution terms. Equa-
tions (26) and (28) provide

A0
c D .C=ba/...t f ¡ t/ C ¿afexp[¡.t f ¡ t/=¿a ] ¡ 1g// (37)

SubstitutingthesevaluesofÁ0 and A0
c in Eqs. (2)and (5), integrating,

and using Eq. (18), we obtain

A0
c.t0/ cos NÁ D

N 0

.t f ¡ t0/2
yr C Vy .t f ¡ t0/ C 1

2
ATy .t f ¡ t0/2

¡ N 0 A.t0/ cos NÁ
.T C e¡T ¡ 1/

T 2
(38)

where

T D
.t f ¡ t0/

¿a

(39)

and

N 0 D 6T 2[T C e¡T ¡ 1]

3 C 6T ¡ 6T 2 C 2T 3 ¡ 12T e¡T ¡ 3e¡2T C 6ba ¿ 3
a

(40)

Integrating Eqs. (3) and (4), a similar expression can be obtained:

A0
c.t0/ sin NÁ D

N 0

.t f ¡ t0/2
zr C Vz.t f ¡ t0/ C 1

2
ATz .t f ¡ t0/2

¡ N 0 A.t0/ sin NÁ
.T C e¡T ¡ 1/

T 2
(41)

Note that this zero-order outer solution is exactly the optimal guid-
ance law obtained by applying conventionallinear control theory to
the skid-to-turn (STT) missile guidance problem.

Consideringcurrent time as the initial time, we obtained the feed-
back form of the solution. Thus, the zero-order outer solution is

NÁ D tan¡1
zr C Vz.t f ¡ t0/ C 1

2
ATz .t f ¡ t0/2

yr C Vy.t f ¡ t0/ C 1
2

ATy .t f ¡ t0/2
(42)

and

A0
c.t0/ D

N 0

.t f ¡ t0/2
yr C Vy .t f ¡ t0/ C

ATy

2
.t f ¡ t0/

2

2

C zr C Vz.t f ¡ t0/ C
ATz

2
.t f ¡ t0/2

2
1
2

¡ N 0 A.t0/
[T C e¡T ¡ 1]

T 2
(43)

H 0 D ¸0
y Vy C ¸0

Vy
Vy ¡A cos NÁ C ATy C ¸0

z Vz

C ¸0
Vz

Vz ¡A sin NÁ C ATz C ¸0
A A0

c ¡ A ¿a C 1
2
ba A02

c (44)

Zero-Order Inner Solution
As shown earlier for BTT problem, the relativeposition,velocity,

and pitch acceleration are slow states and the bank angle is the fast

state. Slow states and adjoints remain constant in zero-order inner
expansion.

Incorporatingthe time stretchingtransformation¿ D .t ¡ t0/=b PÁ
results in the boundary-layer equations for the missile bank angle
transition at the initiation of terminal guidance. Letting b PÁ ! 0
results in the following set of necessary conditions:

y0
r1

.¿ / D yr .t0/; ¸0
y1

.¿ / D ¸0
y (45)

z0
r1

.¿/ D zr .t0/; ¸0
z1

.¿ / D ¸0
z (46)

V 0
y1

.¿ / D Vy.t0/; ¸0
Vy1

.¿/ D ¸0
Vy

.t0/ (47)

V 0
z1

.¿ / D Vz.t0/; ¸0
Vz1

.¿ / D ¸0
Vz

.t0/ (48)

A0.¿ / D A.t0/; ¸0
A1.¿ / D ¸0

A.t0/ (49)

dÁ0
1

d¿
D b PÁ PÁc; Á0

1 .0/ D Á.t0/; Á0
1 .1/ D NÁ (50)

H 0
1 D ¸0

y Vy.t0/ C ¸0
z Vz.t0/ C ¸0

Vy
.t0/ ¡A.t0/ cos Á C ATy

C ¸0
Vz

.t0/ ¡A.t0/ sin Á C ATz C ¸0
Á1

PÁc C 1
2
ba A02

ci

C 1
2
b PÁ PÁ2

c C ¸0
A A0

c1
.t0/ ¡ A.t0/ ¿a (51)

where superscript 0 indicates zero-order solution and subscript 1
indicatesinner solution.Thus, thecombinationstandsfor zero-order
inner solution. Optimality conditions give

@ H10

@ A0
c1

D
¸0

A

¿a
C ba A0

c1
D 0; A0

c1
D ¡

¸0
A

ba¿a
D A0

c (52)

@ H 0
1

@ PÁc

D ¸0
Á1

C b PÁ PÁc D 0; ¸0
Á1

D ¡b PÁ PÁc (53)

Because the Hamiltonian remains constant for an autonomous sys-
tem, H 0

1 is equal to H 0 , and from Eqs. (44), (51), and (53) we obtain

¡¸0
Á1

PÁc D 2A.t0/ ¸0
Vy

.t0/.cos NÁ ¡ cos Á/ C ¸0
Vz

.t0/.sin NÁ ¡ sin Á/

D 2A.t0/C.t f ¡ t0/[1 ¡ cos. NÁ ¡ Á/] (54)

Using Eqs. (37), (53), and (54) we obtain

PÁc D 2baT A.t0/ ¢ A0
c .t0/[1 ¡ cos. NÁ ¡ Á/]

b PÁ .T C e¡T ¡ 1/
£ sign. NÁ ¡ Á/ (55)

This zero-order inner solution provides the roll-rate command.

First-Order Solution
Note that zero-order solution for accelerationcommand assumes

the missile has achieved the optimum bank angle instantly at initial
time t0 . However, becauseof � nite roll rate, the missile can not attain
the optimum bank angle instantly, and the zero-order acceleration
command must be corrected to compensate for � nite roll dynamics.

If we assume that the states are measurable and the control so-
lution is updated as a function of the current state, then only the
� rst-order correction in ¸A is required to correct the acceleration
command. Because the system dynamics are independentof yr and
zr , the solution is not sensitive to � rst-order correction in ¸y , ¸z ,
¸V y , and ¸V z. Thus, the acceleration command to the � rst order is
given by

Ac D ¡
¸0

A0
C ¸1

A1

ba¿a

(56)

The � rst-order correction in ¸A is obtained next by following the
procedure outlined in Refs. 8 and 9, which involves matching be-
tween the outer solution and the � rst boundary layer.
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From the matching conditions, we have

¸1
A1

.0/ D ¸1
A0

¡
¿ ¤

0

d

d¿
¸1

A1
.¿ / d¿ C ¿¤ d

d¿
¸1

A1
.¿¤/ (57)

where

d

d¿
¸1

A1
D ¡ @ H1

@ A

0

D ¸0
Vy

cosÁ C ¸0
Vz

sin Á C
¸0

A1

¿a

(58)

The time ¿ ¤ is picked suf� ciently large so that Á ¼ NÁ. Thus,

d

d¿
¸1

A1
.¿¤/ D ¸0

Vy
cos NÁ C ¸0

Vz
sin NÁ C

¸0
A1

¿a

(59)

Fig. 2 Sequence of perturbation solution computations.

Fig. 3 Relative position histories.

Also ¸1
A0

is equal to zero. Thus, using Eqs. (57) and (59), the � rst-
order correction in ¸A is given by

¸1
A1

.0/ D
¿ ¤

0

C.t f ¡ t0/[1 ¡ cos. NÁ ¡ Á/] d¿ (60)

From Eq. (55)

PÁ D K PÁ [1 ¡ cos. NÁ ¡ Á/]
1
2 D

p
2K PÁ sin[. NÁ ¡ Á/=2]

K PÁ D 2baT A.t0/A0
c .t0/

b PÁ .T C e¡T ¡ 1/

(61)

Now assuming K PÁ 6D 0, Eq. (60) can be written as

¸1
A1

.0/ D
C.t f ¡ t0/

K PÁ

NÁ

Ác

[1 ¡ cos. NÁ ¡ Á/]
1
2 dÁ (62)

¸1
A1

.0/ D 2
p

2
C.t f ¡ t0/

K PÁ
1 ¡ cos

³ NÁ ¡ Á0

2

´
(63)

Fig. 4 Roll-rate command history.

Fig. 5 Missile bank angle history.
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Fig. 6 Acceleration command history.

Thus, usingEqs. (37), (52), (56), and (63), theaccelerationcommand
is

Ac D A0
c 1 ¡

2
p

2T

K PÁ¿a.T C e¡T ¡ 1/
1 ¡ cos

³ NÁ ¡ Á0

2

´

D A0
c 1 ¡

4
p

2T sin2[. NÁ ¡ Á0/=4]

K PÁ¿a.T C e¡T ¡ 1/
(64)

Because the time constant of the roll-rate autopilot is very small
(0.02–0.04 s) and the guidancesolution is the updatedonboardmis-
sile at 80–100 Hz rate, no higher-order terms are required for the
roll-rate command solution.

III. Numerical Results
Perturbation solution trajectories were generated by numerically

integratingEqs. (1–6).The accelerationcommandandroll-ratecom-
mand for theBTT missile arede� nedby theouterand innersolutions

discussedearlier given by Eqs. (39), (40), (42), (43), (61), and (64).
These commands are updated at each integration step based on the
current relative position, velocity, and target acceleration and are
applied for the next step. Thus, the state vector after each integra-
tion step is used as a new initial conditionfor the optimization loop.
The sequence of computation is shown in Fig. 2.

A number of engagements were simulated. Figures 3–6 show
the relative position, missile roll rate, missile bank angle, and ac-
celeration command histories for a typical engagement. The target
was making a 9-g maneuver at the initiation of terminal engage-
ment. Near optimality of the solution was illustrated in Ref. 4 for a
zero-time-lag pitch autopilot case by comparison with the optimal
solution.

IV. Summary
Perturbation techniques have been used to develop a nonlinear

feedback guidance algorithm for a BTT missile. The remarkable
similarity of the algorithms to STT guidancealgorithmsused in ex-
isting missiles, the same � lter requirements,and the good computa-
tional ef� ciencymake these algorithmsvery attractivefor real-time,
onboard implementation.

References
1McGehee, R. M., “Bank to Turn (BTT) Technology,” AIAA Paper 79-

1752, 1979.
2Sridhar,B., andGupta, N. K., “Missile GuidanceLaws Based on Singular

Perturbation Methodology,” Journal of Guidance and Control, Vol. 3, No.
2, 1980, pp. 158–165.

3Stallard, D. V., “An Approach to Optimal Guidance for a Bank-to-Turn
Missile,” AIAA Paper 80-1747, 1980.

4Aggarwal, R. K., and Moore, C. M., “Near-Optimal Guidance Law for
a Bank-to-Turn Missile,” American Control Conf., Vol. 3, June 1984, pp.
1408–1415; also Paper FA7-11:15.

5Bryson, A. E., and Ho, Y. C., Applied Optimal Control, Ginn, Waltham,
MA, 1969, pp. 148–153.

6Calise, A. J., Aggarwal, R., and Anderson, G. M., “Aircraft Optimal
Weapon Delivery Maneuvers Based on Extended Energy Management,”
AIAA Paper 75-1076, 1975.

7Carlos, L. N., Crigler, S. W., and Calise, A. J., “Power-Off Range Op-
timization Using Extended Energy Management Techniques,” AIAA Paper
75-201, 1975.

8Calise, A. J., “A SingularPerturbationAnalysis ofOptimal Aerodynamic
and Thrust Magnitude Control,” IEEE Transactions on Automatic Control,
Vol. AC-24, No. 5, 1979, pp. 720–730.

9Ardema, M. D., “Singular Perturbations in Flight Mechanics,” NASA
TM X-62380, Oct. 1975.


