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Terminal Guidance Algorithm for Ramjet-Powered Missiles

Romesh K. Aggarwal* and Charles R. Moore'
Raytheon Systems Company, Tewksbury, Massachusetts 01876

The terminal guidance design problem for a long-range bank-to-turn (BTT) ramjet missile involves a completely
coupled pitch-yaw-roll nonlinear dynamics model. Because of these nonlinear dynamics, an optimal solution for
acceleration and roll-rate commands can be found only by numerical methods for solving two-point boundary
value problems. Because the roll-rate dynamics of the state-of-the-art missiles is much faster than the rest of the
system states, a near-optimal solutionis obtained to the BTT guidance problem using multiple timescale techniques.
Nonlinear feedback solutions for the acceleration command and roll-rate command are derived. The zero-order
slow solution obtained by treating roll rate as infinitely fast, is exactly the optimal guidance law for a skid-to-turn
missile. The zero-order fast solution provides the roll-rate command. A first-order analysis corrects the acceleration
command for the finite dynamics behavior in bank angle. Simulation results are presented for a representative
terminal engagement using this algorithm. Near-zero miss distances are obtained in a noise-free environment.

I. Introduction

AMIETS or ramjet derivatives are the only viable choice for

long-range air-to-air missiles. Ramjets can tolerate very small
sideslip angles and negative angles of attack due to propulsion sys-
tem flameout problems. Thus, ramjet powered missiles utilize bank-
to-turn (BTT) guidance. The design of a terminal guidance system
for a ramjet BTT missile is a difficult task due to nonlinear pitch-
yaw-roll dynamics. BTT configurations were studied for the rocket-
powered, short-range air-to-air missiles in Ref. 1, where classical
techniques were used to design the guidance system. Reference 2
used singular perturbation techniques to derive BTT guidance law
for a short-range air-to-air missile. However, in this formulation
the nonlinearity was introduced in the position dynamics due to the
heading of the missile velocity vector and the analysis ignored the
pitch and roll dynamics.

A long-range missile is essentially on the collision course at the
initiation of terminal guidance. Thus, the position dynamics are
considered linear, and the nonlinearity is introduced by the roll dy-
namics of the missile. This problem was treated in Ref. 3, where
the system dynamics were linearized about a nominal bank angle
and linear quadratic control techniques were utilized to obtain the
guidancelaw. However, the linear solution assumes that missile will
not roll through a large angle. This assumption does not hold for
many engagements.Reference4 used multiple timescale techniques
to develop a nonlinear BTT guidancelaw and verified the near opti-
mally of the feedback guidance law by comparing it to the optimal
solution. However, this solutionwas derived assuming perfect (zero-
lag) pitch and roll-rate autopilots. The roll-rate time constant of a
state-of-the-art missile is very small (0.02-0.04 s). Thus, the roll-
rate autopilotcan be assumed perfect. However, the time constantof
a pitch autopilotis approximately 0.25 s. Thus, pitch-rate dynamics
are not negligible compared to roll dynamics. Also, the assumption
in Ref. 3 that the missile will not roll through a large angle may be
invalid for some engagements.

This paper extends the solution of Ref. 4 to develop a nonlinear
feedback guidancelaw fora BTT missile assuminga first-orderpitch
autopilot and a zero-lag roll-rate autopilot. As in Ref. 4, the prob-
lem is formulated as a cheap control problem, that is, the weighting
factor on the roll control cost is chosen small. This weighting factor
becomes the perturbation parameter in the multiple timescale anal-
ysis, and the resultant problem separates into slow and fast modes.
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The solutionis carried to the first order in the perturbation parame-
ter, which corrects it for the finite roll dynamics. The resultant BTT
guidance algorithm was incorporated in a computer program, and
a representative set of terminal engagements were simulated. Miss
distances were negligible in the absence of noise.

II. Derivation of the BTT Missile Guidance Algorithm

In this section, the terminal guidance problem for a long-range
ramjet missile against an air target is formulated as an optimal con-
trol problem, and the solution using multiple timescale techniques
is outlined.

Problem Formulation

As in Ref. 4, the problem is formulated in a nonrotating coor-
dinate frame that is aligned with the seeker frame at the start of
terminal guidance. Figure 1 gives a simple planar representationof
the intercept geometry in the x,, z, plane, with the x, axis along the
initial line of sight and the z, axis normal to it. A similar picture
applies to the x,, y, plane. In this frame, the intercept dynamics for
a BTT missile are represented by the following model:

=Y 1)

V, = —Acos¢ + Ar, @)
=V, 3)

V.= —Asing + Az 4)
A=A, - A/, ®)
¢ =¢. 6)

where y, and z, are therelative positionerrors, V, and V; are therela-
tive velocity errors, A cos ¢, Asing, Ar,, and Ay, are therespective
components of missile and target accelerationsnormal to the line of
sight, and ¢ is the missileroll angle. A. and ¢, are, respectively, the
missile acceleration command and roll-rate command. The missile
is assumed to have a zero-lag roll-rate autopilot and a first-order
acceleration autopilot with time constant t,. The closing velocity
V. along the initial line of sight x, is assumed constant. Thus, the
intercept time is obtained from the relation

X, = Ve(ty —1) @)

An optimal choice for the controls A¢ and q5C is sought, where the
criterion for the optimality is the minimization of the performance
index given by

1y
J:%{yf(tf)+zf(tf)+/ (b,lA§+b¢-,qsf)dt} ®)
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Fig.1 Moving nonrotating coordinate system for air-to-air missile.

Optimal Solution
The Lagrange multiplier method may be used to find the optimal
solution’ The Hamiltonian for this problem is

H =21V, + Ay, (—A cos¢ + AT»»)

+a.V. +ay.(—Asing + Ap)

Fhp e + (b AZ+ b hl) + ha(A — A/, )
Because the Hamiltonian does not depend on y, or z,,

A, =0 (10)

r.=0 (1)

The other four Lagrange variables are

: oH
Ay, = —— = -4, 12
vy oV, v (12)
: oH
Ay, = ———— = —A; 13
v, 3V, : (13)
. oH A
Ap = ——— = Ay, COSQ + Ay, sing + — (14)
0A : T,
. 9H ,
Ay = S A(y, cos¢ — Ay, sing) (15)
The final values of Ay, , Av,, A4, and A4 are zero and
Ay(tp) = y:(tf) (16)
A (tp) = z.(ty) 17
Define
y(t;) = Ccos¢p (18)
z,(t;) = Csing (19)

where C is the unknown terminal miss distance given by

C = yrz(l‘f) +Z3(tf) (20)
and
- 2 ()
= tan~! —= 21
¢ o yr(tf)

with these definitions, Eqs. (10-13), with terminal values of Ay, and
Ay, set to zero, resultin the following:

Ay (t) = const = C cos ¢ (22)
X, (t) = const = Csin¢ (23)
Ay, (t) = Ccos(t; — 1) (24)

Av.(t) = Csing(t; — 1) (25)

and Egs. (14) and (15) become
Ay = Clcos(¢p — $)(ty — 1) + Aa/Ta. Aalty) =0 (26)
ro = AC[sin(¢ — §)(t; — 1), ret) =0 (27

The optimality conditions give optimal acceleration and roll-rate
commands

oH Aa

B_A(. =0= ‘L'_u + b, A, (28)
and

£=O=A¢+b¢q§(. (29)

¢,

Note that the given optimal control problemis a two-pointboundary
value problem (TPBVP) involving Egs. (1-8), (18), (19), and (26—
29). Several numerical methods are available for the solution of
the TPBVP. Although real-time solution of the TPBVP is possible,
the numerical techniques are computationally intensive and may
strain onboard throughput requirements. The following develops a
near-optimal feedback solution of this problem using the multiple
timescale analysis based on perturbation techniques.

The final closed-form solution is a simple function of existing
state variables, which can be readily implemented for real-time op-
eration. System performance could then be compared between a
more simple BTT law and the first-order solution provided here to
determine the degree of performance improvement. If further im-
provement were required, the exact solution of the TPBVP could be
implemented.

Perturbation Solution

Perturbation methods can be described as model order reduction
techniques that capitalize on the presence of slow and fast modes in
the system. These methods have been applied to problemsin optimal
control and estimation 57 In linear problems, ill conditioningin the
dynamicsis avoided, and a high-orderproblem is reduced to the so-
lution of two (or more) low-order problems. In nonlinear problems,
perturbation techniques have led to nonlinear control solutions in a
feedback form.

In the perturbationtechniques, the optimal control and trajectory
solution is expanded in an outer expansion solution about a system
parameter ¢ = 0:

9-
-(t,e):-(t,0)+$e+---, t € (ty, ty) (30)
where - denotes the states, adjoints, and control variables. However,
the expansion in Eq. (30) is not uniformly valid in the interval z, <
t < t; because the fast states and their adjoints will not satisfy
their respective boundary conditions at initial and/or terminal times.

This leads to the occurrence of boundary layer or inner expansion
solutions

9
-(‘C,8)=-(‘C,O)+$8+---, t=t (31)

9
-(a,e)z-(a,O)-l—%e-l—---, t=t; (32)

These solutions are derived using the time stretching transforma-
tions

T=(t—1ty)/e, o=(ty—1t)/e (33)

about? = fpandt = t;, respectively.The total solution, whichis the
sum of inner and outer expansions, satisfies all of the boundary con-
ditions and is uniformly valid in the closed intervalto 7y < ¢ < t;.

The inner expansion solution at terminal time is only required in
cases where fast states have specified terminal values. For the BTT
problem, bank angle is the fast state, and because the bank angle is
not specified at terminal time 7, in this case no inner expansion is
required at terminal time.
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Zero-Order Outer Solution

From Egs. (8) and (29), the optimality conditions, it can be seen
that when b; — 0 (¢, is a cheap control) the optimum ¢, at initial
time £, is an impulse. Moreover, Eqs. (27) and (29) imply that this
roll-rate command impulse at time #, will bring the roll angle ¢ to
¢ (value of optimum ¢ will be determined later) and for time ¢ > o

Ap(1) =0, (o, 1] (34)
by (1) = 0, (9, 1] (35)
Thus, the system dynamics are separated into slow and fast modes,
with relative position, velocity, and pitch acceleration being slower

and bank-angle dynamics being faster. Thus, the zero-order slow
solution is obtained as follows:

¢’ =¢ (36)

where superscript 0 refers to zero-order outer solution terms. Equa-
tions (26) and (28) provide

A? = (C/bu)((tf - t) + tu{exp[_(tf - t)/tu] - 1}) (37)

Substitutingthese valuesof ¢° and A inEqs. (2)and (5), integrating,
and using Eq. (18), we obtain

’

_ 1
0 — PR
A (to) cosp = ml:yr + Vot — 1) + EATy(tf f) i|
(T+e T -1
— N'A(ty) cosqﬁ(eT—z) (38)
where
tr—t
T = [Uni0) (39)
tll
and
N 6TT + e T — 1]

[346T — 672 +2T3 — 12Te"T — 3e~2" +6b, /73]

(40)
Integrating Eqs. (3) and (4), a similar expression can be obtained:

0 .= N’ 1 2
Ad(ty) sing = T z + V.ty — 1) + EATz(tf — 1)
r—th

(T+4e T —1
— N'A(ty) sin ¢(+6T—2)

(41
Note that this zero-order outer solution is exactly the optimal guid-
ance law obtained by applying conventionallinear control theory to
the skid-to-turn (STT) missile guidance problem.
Consideringcurrenttime as the initial time, we obtained the feed-
back form of the solution. Thus, the zero-order outer solution is

5 = tan”! {Zr+Vz(tf_tO)—’_%ATz(tf_tO)z} 42)
{yr+vy(tf_t0)+%ATy(tf_tO)z}
and
Ao(t):_/ + V(¢ —t)-l—ﬂ(t —t)22
o ; —10)? Yr yy — 1o 5 dr—h

1

212
ATz 2
+ Zr+Vz(l‘f—t0)+_2 (tf—to)

T+e -1
— N/A(to)% (43)

H® =20V, +2 V,(~Acosg + Ar,) + 20V,
+19 V. (~Asing + Ar ) +25(A0 = A) [7, + 15,47 (44)
Zero-Order Inner Solution

As shown earlier for BTT problem, the relative position, velocity,
and pitch acceleration are slow states and the bank angle is the fast

state. Slow states and adjoints remain constant in zero-order inner
expansion.

Incorporatingthe time stretching transformationt = (¢ — 1,) /b 4
results in the boundary-layer equations for the missile bank angle
transition at the initiation of terminal guidance. Letting b ; — 0
results in the following set of necessary conditions:

Y (@) = v (10), A () = 2] (45)
z (7)) = 2. (1), A2 (1) = A (46)
Vi (T) = Vy(10), Ay, () = 45, () (47)
Vi) = V.(to), Ay, (1) = Ay, (1) (48)
A'(t) = An), M (1) = 25 (to) (49)
dep? . 0 0 _
= =bide $L(0) = ¢ (1), Pl(00) =¢ (50)

HY = 1V, (t0) + 22V, (ty) + 43, (t0) (—Aty) cosd + Ar, )
+49 (1) (—At) sing + Ar.) + 15, ¢, + 1b,AZ

+1b, 62 +25(A% 1) — A) /. 51)

where superscript O indicates zero-order solution and subscript 1
indicatesinner solution. Thus, the combinationstands for zero-order
inner solution. Optimality conditions give

dHpo 25 20
== 1p,A =0, A = ——4
8A9| tu “ ! butu

=A" (52)

dH" :
—L =% +b;¢, =0,
29 o TD0,

¢

Ay, =—bid.  (53)

Because the Hamiltonian remains constant for an autonomous sys-
tem, H is equal to H, and from Eqgs. (44), (51), and (53) we obtain
—1%, . =2A(t) [, (to) (cos p — cos p) + 1Y, (o) (sinp — sing) ]

=2A(1)C(t; — to)[1 — cos(¢ — ¢)] (54)
Using Egs. (37), (53), and (54) we obtain

x sign(¢p — ) (55)

o 26, T A®ty) - A2(10)[1 = cos(¢ — )]
9= by(T+e T —1)

This zero-order inner solution provides the roll-rate command.

First-Order Solution

Note that zero-order solution for accelerationcommand assumes
the missile has achieved the optimum bank angle instantly at initial
time 7. However, because of finite roll rate, the missile can notattain
the optimum bank angle instantly, and the zero-order acceleration
command must be corrected to compensate for finite roll dynamics.

If we assume that the states are measurable and the control so-
lution is updated as a function of the current state, then only the
first-order correction in A, is required to correct the acceleration
command. Because the system dynamics are independentof y, and
z,, the solution is not sensitive to first-order correctionin Ay, A,
Avy, and Ay.. Thus, the acceleration command to the first order is
given by

A%, + A
A, = _M (56)
bll tll
The first-order correction in A, is obtained next by following the
procedure outlined in Refs. 8 and 9, which involves matching be-
tween the outer solution and the first boundary layer.



AGGARWAL AND MOORE

From the matching conditions, we have

Ay, (0) = A,

Ao

where

dr" 4

d. .  aH

dt dt

Tk d d
—/ — 2y, (D) dT 4 Tr—2) (1) (57)
0

)\0
= Ay, cos¢ + Ay, sing + ek (58)

a

The time t* is picked sufficiently large so that ¢ & ¢. Thus,

)\0
d, =20 cosgp+ 1% singp + - 59
—hy, (T%) = Ay, cos@ + Ay sing + — (59)
dr ;
Initial Conditions,
IFty-tg <t Terminal Time t;,
Setat=ty-to Update interval At
T =]
Yes *
No 2
End N {1 to)
A = to) + Vy (14 - tg) + A
Y g1 {yr(")’ yltel A1y
2
N - to)
A, = 2 (tg) + Vg (- to) + Ap, ———
4 (tg- '0)2 { z 2
Sett=ty
T=(ty-to)/1a
* - 6T2[T+eT-1
[3+6T-6T2 4 273 -12Te T - 3027 + 6b,/1a3)
System Dynamics
Ve=Vy A= A%y»,n";z “NATs0T-1)/12
y= -Acos@ + ATy A¢y
Zp=V, ?=tan°1
Ac
. z
Vz=-Asin@ + A
. z # 5, A2
A=z(Ac-Afy
Zero-Qrder Inner Solution
2=0¢ Kg = [2bTAAS /b (T + e T-1))12
i . s gin( 222
Integrate System e -,/2_ Kg sin{ =5
Dynamics Over Time
Interval At ‘ 7,40 &,
Eirst-Order Quter Solution
Ac=AS[1-4 2T sin2 (';—’)/61,(1'.e'1'-1)]
| Ag, B

Fig.2 Sequence of perturbation solution computations.
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Also )‘le is equal to zero. Thus, using Egs. (57) and (59), the first-

order correctionin A, is given by

Ay, (0) = / Clty —1p)[1 — cos(d — p)ldr  (60)
0
From Eq. (55)
¢ = K 4[1 —cos(d — $)1* = V2K ;sin[($ — $)/2]
(61)
oo | 2DuT A AL)
¢ by(T+e T —1)
Now assuming K ; # 0, Eq. (60) can be written as
ci,—1)] ¢ B, |
iy, (0) = [#} / [1—cos(@—¢)ITdp  (62)
A (O):Zﬁ[MiH:l —c0s<¢_¢0>i| (63)
! K¢ 2
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Fig.4 Roll-rate command history.
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Thus, using Egs. (37),(52), (56), and (63), the accelerationcommand

is
_ 401 _ 22T _ ¢ — oo
A, = A(,|:1 K, e D) 1 —cos 2

_ ol | 2T Sn@ — o) /4]
‘ Kqétu(T +e T — 1)
Because the time constant of the roll-rate autopilot is very small
(0.02-0.04 s) and the guidance solution is the updated onboard mis-

sile at 80-100 Hz rate, no higher-order terms are required for the
roll-rate command solution.

(64)

III. Numerical Results
Perturbation solution trajectories were generated by numerically
integratingEgs. (1-6). The accelerationcommand androll-ratecom-
mand for the BTT missile are defined by the outerand inner solutions

discussedearlier given by Egs. (39), (40), (42), (43), (61), and (64).
These commands are updated at each integration step based on the
current relative position, velocity, and target acceleration and are
applied for the next step. Thus, the state vector after each integra-
tion step is used as a new initial condition for the optimization loop.
The sequence of computation is shown in Fig. 2.

A number of engagements were simulated. Figures 3-6 show
the relative position, missile roll rate, missile bank angle, and ac-
celeration command histories for a typical engagement. The target
was making a 9-g maneuver at the initiation of terminal engage-
ment. Near optimality of the solution was illustrated in Ref. 4 for a
zero-time-lag pitch autopilot case by comparison with the optimal
solution.

IV. Summary

Perturbation techniques have been used to develop a nonlinear
feedback guidance algorithm for a BTT missile. The remarkable
similarity of the algorithms to STT guidancealgorithmsused in ex-
isting missiles, the same filter requirements, and the good computa-
tional efficiency make these algorithms very attractivefor real-time,
onboard implementation.
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